Appearance
Partitions
Problem Description
You are given a 1D integer array B containing A integers.
Count the number of ways to split all the elements of the array into 3 contiguous parts so that the sum of elements in each part is the same.
Such that : sum(B[1],..B[i]) = sum(B[i+1],...B[j]) = sum(B[j+1],...B[n])
Problem Constraints
1 <= A <= 10^5
-10^9 <= B[i] <= 10^9
Input Format
First argument is an integer A.
Second argument is an 1D integer array B of size A.
Output Format
Return a single integer denoting the number of ways to split the array B into three parts with the same sum.
Example Input
Input 1:
A = 5
B = [1, 2, 3, 0, 3]
Input 2:
A = 4
B = [0, 1, -1, 0]
Example Output
Output 1:
2
Output 2:
1
Example Explanation
Explanation 1:
There are no 2 ways to make partitions -
1. (1,2)+(3)+(0,3).
2. (1,2)+(3,0)+(3).
Explanation 2:
There is only 1 way to make partition -
1. (0)+(-1,1)+(0).
Solution
swift
import Foundation
class Solution {
func findCount(_ A: inout [Int], _ B:Int) -> Int {
var l = 0
var h = A.count - 1
while l <= h {
let mid = (l+h) / 2
let v = A[mid]
if v == B {
return (A.count - mid)
} else if v > B {
h = mid - 1
} else {
l = mid + 1
}
}
return A.count - l
}
func solve(_ A: inout Int, _ B: inout [Int]) -> Int {
let total = B.reduce(0,+)
if total % 3 != 0 {
return 0
}
let part = total / 3
var pre = [Int]()
// var suf = [Int]()
var suf = [Int](repeating:0,count:B.count)
let len = A
var accum = 0
for i in 0..<len {
accum += B[i]
if accum == part {
pre.append(i)
}
}
// accum = 0
// for i in (0..<len).reversed(){
// accum += B[i]
// if accum == part {
// suf.append(i)
// }
// }
// suf.reverse()
accum = 0
var sufCount = 0
for i in (0..<len).reversed(){
accum += B[i]
if accum == part {
sufCount += 1
}
suf[i] = sufCount
}
var result = 0
for i in pre {
// if pre[i] == 0 {
// continue
// }
var c = 0
if (i+2) < len {
// for j in (i+2)..<len {
// if suf[j] > 0 {
// c += 1
// }
// }
// c = findCount(&suf,i+2)
c = suf[i+2]
}
if c == 0 {
break
}
// let c = Array(suf[i+2..<len]).reduce
result += c
}
return result
// if part == 0 {
// var zeroParts = [(Int,Int)]()
// var accum = 0
// var start = 0
// for i in 0..<A {
// accum += B[i]
// if accum == 0 {
// zeroParts.append((start,i))
// start = i + 1
// }
// }
// if zeroParts.count < 3 {
// return 0
// }
// var result = 0
// let len = zeroParts.count-2
// for i in 0..<len {
// // let l = i
// let r = len - i - 1
// result += (r+1)
// }
// return result
// }
// var zeroParts12 = [(Int,Int)]()
// var zeroParts23 = [(Int,Int)]()
// var equalParts = [(Int,Int)]()
// // let len = A
// var accum = 0
// var start = 0
// for i in 0..<A {
// accum += B[i]
// if accum == 0 {
// if equalParts.count == 1 {
// zeroParts12.append((start,i))
// } else if equalParts.count == 2 {
// zeroParts23.append((start,i))
// }
// start = i + 1
// } else if accum == part {
// equalParts.append((start,i))
// start = i + 1
// accum = 0
// } else if accum > part {
// return 0
// }
// }
// if equalParts.count < 3 {
// return 0
// }
// return (zeroParts12.count+1)*(zeroParts23.count+1)
}
}